University of Information Technology and Sciences

Faculty of Science and Engineering

Department of CSE Midterm Examination, Autumn- 2023

Course Title: Differential and Integral Calculus

Course Code: MAT 163

Marks: 20 Time: 1 hour

Answer all the questions

(a) Define even function and odd function. Test whether the following [3] functions are even or odd.

(i)
$$f(x) = \ln(x + \sqrt{1 + x^2})$$

(ii)
$$f(x) = \frac{|x| - x^2}{2\cos x}$$

(b) Sketch the graph of the following functions. Also find domain and range of the following functions. [4]

(i)
$$f(x) = 2 + \sqrt{x-4}$$
 (ii) $f(x) = 1 + |x-2|$

(c) If
$$f(x) = x^2 + 1$$
, $g(x) = \frac{1}{x}$ and $h(x) = x^3$, find $(f \circ g \circ h)(x)$. [3]

2. Find $\frac{dy}{dx}$.

(i) $x^3 + y^3 = 3xy$ (ii) $\sin(x^2y^2) = x$ (iii) $y = x^3 \sin^2(5x)$ (iv) $y = [1 + x^2 \sin^3(x^5)]^{12}$ (v) $y = \sqrt{x^3 + \cos e c x}$

col: - cosec2 x.

see x = see x for x

colsecx = - cosec x colx

University of Information Technology & Sciences (UITS)

Faculty of Science and Engineering

Department of Computer Science and Engineering

Program of B.Sc. in CSE

Mid Term Examination, Autumn- 2023

Course Title: Differential and Integral Calculus

Course Code: MAT 163

Marks: 20

Time: 1(one) hour

[02]

(Answer all questions)

(a) Find domain and range of the following functions and also sketch the graph
of the following functions:

(i)
$$f(x) = \sqrt{(-x-2)} - 4$$
 (ii) $f(x) = \frac{x}{x+3}$

(b) Define even function and odd function. Test whether the following functions are even or odd.

(i)
$$f(x) = (x + \sqrt{1 + x^2})$$

(ii)
$$f(x) = \frac{tanx}{x + sinx}$$

(c) If
$$f(x) = \sqrt{x^3 + 2\sqrt{x}}$$
, $g(x) = (1+x)^{-1}$ and $h(x) = x^{3/2}$. [03] find $(f \circ g \circ h)(x)$.

2. (a) A function f(x) is defined as follows.

$$f(x) = \begin{cases} 2x + 3, & x \le 4 \\ 7 + \frac{16}{x} & x > 4 \end{cases}$$

Discuss the continuity of f(x) at x = 4.

(b) Find
$$\frac{dy}{dx}$$
.
(i) $x^3y + 4xy^2 = 3xy$ (ii) $\sin(x^2y^2) = x$
(iii) $y = \frac{\sin x}{1 + \cos x}$ (iv) $y = [1 + \cos^3(\sin 2x)]^{-3}$