University of Information Technology & Sciences (UITS) Faculty of Science and Engineering

Department of Computer Science and Engineering

Program: B.Sc. in CSE

Mid Term Examination, Spring 2025 Course Title: Engineering Chemistry

Course Code: CHEM0531111

Marks: 20

Time: 1(one) hour

(Answer all questions)

Q.No. Questions Marks

1. a) Figure 1(a) shows that Matter can act as waves like light and radiation, which also [03] behave as particles. **Derive** and **explain** the de Broglie equation to justify the statement.

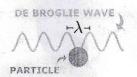


Figure 1(a)

b) Some elements exist in different forms called isotopes, while others form ions by [04] gaining or losing electrons. Understanding these subatomic particles helps in identifying elements and determining their properties. **Identify** the number of protons, neutrons, and electrons of the following atoms and ions.

Element / Ion	Atomic Number (Z)	Mass Number (A)	Protons (P)	Neutrons (N)	Electrons (E)
Carbon-14				199	3
Oxygen-17			Name of the last		
Sodium Ion-11 (Na ⁺)	100				
Hydrogen-2					
Sulfur-32 Ion (S ²⁻)			balk .		The second
Potassium-39 (K)					

c) The Figure 1(c) shows the history of the evolution of atomic theory which reflects a [03] journey of scientific discovery, where each step has brought us closer to understanding the fundamental nature of matter. Now, Compare the advancement of the modern atomic theory using Figure 1(c).

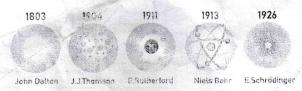


Figure 1(c)

- 2. a) In the microscopic world of atoms, electrons are not just randomly placed; they [04] follow specific rules defined by quantum numbers. These numbers determine an electron's energy level, shape, orientation, and spin, helping scientists predict an element's chemical behavior. According to the quantum number theory
 - i. **Draw** s, p and d orbital shapes and explain the reason for their different shape such structures.
 - ii. **Show** quantum numbers that determines three orientations of p-orbitals, and mention their possible values.
 - b) The first widely accepted version of the periodic table was proposed by Dmitri [03] Mendeleev in 1869 [Table 2(b)]. Mendeleev arranged elements by increasing atomic mass, which led to the discovery of periodic patterns in their properties. Though he was so confident of his table, it has some limitations. Identify those limitations and describe how modern periodic table is different from Mendeleev's table.

Table 2(b)

Group	1	- II	Ш	IV	v	VI	VII	VIII
Oxide Hydride	R ₂ O RH	RO RH,	R,O, RH,	RO, RH,	R ₂ O ₅ RH ₃	RO, RH,	R ₂ O,	RO ₄
Periods	A B	A B	A B	A B	A B	A B	A B	
1	H 1 008							
2	Li _6.93	Be 9.01	B 10.81	C 12.01	N 14.00	O 15.99	F 18.99	
3	Na 22.99	Mg 24.31	Al 26.98	Si 28.09	P 30.97	S 32.06	CI 35.45	and the second s
4 1st Series 2nd	K 39.10 Cu	Ca 40.08 Zn	44	Ti 47.90	V 50.94 As	Cr 52.10 Se	Mn 54.9 Br	Fe Co Ni 55.85 58.93 58.71
Series	63.5	65.4	68	72	74.9	79.0	79.9	

c) As a Computer Science Engineer, understanding how chemistry is integrated into [03] the development of modern computing technologies can be crucial. Chemistry plays a significant role in areas like materials science, hardware development, energy storage, and even advancements in quantum computing. If you agree with the above statement, **explain** your opinion in brief. (You may use Figure 2(c) as reference)

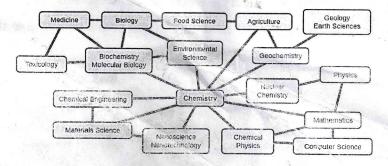


Figure 2(c)